Grad Fellow Notes: STATA’s Command -coefplot-
The coefplot command allows you to plot results from estimation commands. It is a user package, so you will have to find and install it by inputting into the Stata command line:
findit coefplot
The coefplot command allows you to plot results from estimation commands. It is a user package, so you will have to find and install it by inputting into the Stata command line:
findit coefplot
When companies need to know what their consumer base is thinking, surveying is often the only scalable way to find out this information. Nevertheless, surveys take up a lot of time and can be incredibly boring. As the respondents’ patience gets zapped by the umpteenth question and their willpower dies, they employ coping strategies known as “satisficing”— a fancy way of saying that respondents just try to meet the lowest threshold of acceptability for an answer, rather than making the time to give the best response. This can be seen when questionnaires come back with all answers being “5/5”, “extremely happy”, or other arbitrary patterns that call to question their authenticity and potentially hurt data quality.
On a recent project, the client wanted an idea of the skew of each of a large number of variables. The data originated from a satisfaction survey (1=very dissatisfied; 5=very satisfied). On our Excel presentation sheet, we were to choose from the following options to describe the population’s view regarding each variable: right-skewed (generally very dissatisfied), left-skewed (generally very satisfied), U-shaped (most were either very dissatisfied or very satisfied, with few being neutral), or normal-shaped (most were neutral, with few being either very dissatisfied or very satisfied).
With the steady rise of the number of impact evaluations (IEs) per year, it should come as no surprise that not every single IE will show a positive impact. The authors of “no impact” evaluations will understandably be worried that their work will not be academically published nor be used for public policy. There is, however, still value in such information. Evidence that a particular program does not work paves the way for alternative interventions to happen. Licona (2017) provides several examples where null results in Mexican education programs encouraged the tweaking of aspects such as selection criteria, consolidation of redundant programs, and budget optimization.